IT Mídia
Notícias em destaque
RSS
Gabriela Stripoli Gabriela Stripoli
Esporte | 3 de fevereiro de 2014

Big Data gera erro na previsão do vencedor do Super Bowl

Empresa usou ferramenta própria e errou feio o resultado do jogo mais importante do futebol americano. Mas não se assuste -- a falha não está no poder do Big Data

Quem acompanha o futebol americano da NFL e a área de tecnologia pode ter visto, na semana passada, uma empresa especializada em tecnologia de compra de publicidade online em tempo real anunciar que havia previsto o vencedor do Super Bowl por meio de sua ferramenta de Big Data. Seriam os Denver Broncos, para a Varick Media Management (VMM).

Eles erraram feio. Os Broncos não só saíram derrotados pelo Seattle Seahawks, como foi uma vitória de lavada do time da costa oeste. Seria então o Big Data, tido como imenso recurso de TI para tomada de decisões, uma armadilha?

Claro que não. O gerente de produtos de high-performance analytics do SAS, Marcos Pichatelli, explica que o erro básico da VMM foi de metodologia. Quando a companhia usou as estatísticas anteriores dos jogos da NFL para abastecer sua solução, ela conseguiu um resultado estatístico de chance de vitória de cada um dos times. Ainda assim, não conseguiu contemplar variáveis não mensuráveis – como outros jogadores em campo, influência da temperatura, e até mesmo nervosismo dos atletas. “É muito espaço pra erro. Vamos pensar nos últimos cem jogos. Durante essas partidas, foram, jogadores diferentes, estádios diferentes, condições atmosféricas diferentes, muita coisa imponderável”, exemplifica.

A SAP, em nota, também comentou o caso à reportagem da InformationWeek Brasil. “Estamos prevendo um evento isolado com muito pouco dado sobre partidas entre os dois times – apenas dois encontros anteriores com escalação similar – para um grande evento em um dia”, ressalta a companhia. “A margem para erro era muito ampla, e por isso é muito difícil prever com 100% de certeza”, complementa.

Lições corporativas

Com isso, podemos tirar algumas elucidações para o mercado corporativo. Entre os cuidados que podemos tomar com dados estatísticos e análises preditivas em cima de Big Data, em primeiro lugar, é importante pensar que o resultado de uma análise é baseado em um grupo de indivíduos e um grupo de ações. “Quando algum cliente, uma empresa de telecomunicações que quer saber os clientes com maior probabilidade de abandonar e passar para um concorrente, por exemplo, fornecemos para o cliente um ranking com as maiores probabilidades”, esclarece Pichatelli. “Ou seja, se você fizer uma ação de retenção naquele grupo, você terá um investimento menor e um retorno maior”, complementa.

Além da metodologia, outra lição se dá pela qualidade da amostra. “O que essa empresa fez eu chamo de ‘barbeiragem técnica’. Não conheço nenhum estatístico que daria uma resposta certeira de sim ou não, fora de uma probabilidade”, brinca o especialista. Isso fica claro quando traçamos um paralelo – como calcular o risco de algo que não aconteceu, ou aconteceu muito pouco? Em exemplo prático, é impossível calcular as futuras perdas de uma agência bancária em São Paulo em um dia de protestos. “Os dados disponíveis são poucos, não foram tantos protestos assim. Não houve recorrência. É um grande perigo fazer estatística com dados históricos fracos”, elucida.

Assim, no mundo empresarial, o diferencial do Big Data é aumentar os dados a serem concluídos e analisar grandes volumes de informação para chegar a um resultado mais aproximado da realidade. A tecnologia permite usar recursos brutalmente mais potentes para aumentar a base de dados disponíveis, não para melhorar a amostra.

E quando um executivo toma uma decisão errada em cima dos dados? Pichatelli recomenda dois caminhos – reavaliar a qualidade da amostra e a metodologia utilizada. E dificilmente um erro dramático de análise preditiva aconteceria em um resultado dado por uma ferramenta de Big Data. “A boa técnica em um modelo preditivo já prevê isso dentro do processo de modelagem. A gente separa dados para usar nas massas de dados e testar esse modelo, pois ela simula os resultados em cima dos dados”, conta o executivo do SAS.

E, convenhamos… Se o Big Data fosse capaz de gerar análises preditivas sobre tudo, seria o fim do esporte. “Como vimos na noite passada, pode ser muito difícil prever o elemento humano do jogo, e é isso que torna o jogo empolgante”, pontua a SAP.

Parceiros

Portais: IT Mídia | IT Web | Saúde Web

Fóruns: IT Forum | IT Forum + | IT Business Forum | Saúde Business Forum